RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. SIXTH SEMESTER EXAMINATION, MAY-JUNE 2013 THIRD YEAR

 Date
 : 28/05/2013
 Physics (Honours)

 Time
 : 11am - 1pm
 Paper : VII Gr. A

Full Marks: 40

$\underline{Group-A}$

(Answer <u>any four</u> questions)

		(There any your questions)	
1.	a)	How is straggling of the range of α -particles explained?	[2]
	b)	What is Geiger-Nuttal Law for the α -particles?	[2]
	c)	In positron emission, the proton inside the nucleus is transformed into neutron, but the mass of the proton is less than that of a neutron. Explain the anomaly.	[2]
	d)	Explain spin, magnetic moment and binding energy of the nucleus.	[4]
2.	a)	What is Q-value of a nuclear reaction? What are endoergic and exoergic reactions?	[2+2]
	b)	In an experimental study of the reaction ${}^{7}\text{Li}(p,\alpha)\alpha$, the incident proton of energy 0.25 MeV led to the emission of two alpha particles each of energy 8.6 MeV. What is the Q-value of the reaction? In the reaction expersion or endomoio? Coloulete the momentum of each α	
		the reaction? Is the reaction exoergic or endoergic? Calculate the momentum of each α -particles. [Given $\mu_{\alpha} = 3724$ Mev; $\mu(^{7}\text{Li}) = 7.016005\mu$; where $\mu = 931.502$ Mev]	[1+1+4]
3.	a)	Explain magic numbers. How does the shell model account for the magic numbers? What is the role of the spin-orbit coupling in this connection?	[1+3+3]
	b)	Give experimental evidences in support of the shell structure of nucleous in nuclei.	[3]
4.	a)	State and explain Bohr's hypothesis of the formation of compound nucleus and its subsequent decay. Describe an experiment verifying this hypothesis.	[2+3]
	b)	Explain why fission of heavy nuclei and the fusion of light nuclei lead to release of energy. Calculate the energy released in the fusion of two ${}_{6}^{12}C$ nuclei. Use the mass formula. [Given (in MeV unit) : $a_v = 15.75$, $a_s = 17.92$, $a_A = 23.51$ and $a_p = 33.5$]	[2+3]
		(iii We V unit): $u_v = 13.73$, $u_s = 17.92$, $u_A = 23.31$ and $u_p = 33.3$]	[2+3]
5.	a)	What were the difficulties felt in explaining the features of β -decay? How did Pauli solve the problem?	
	b)	"Free neutrons show β -decay but free proton cannot" —Explain.	[8+2]
6.	a)	Describe the construction and working of a semi-conductor detector. What are the advantages of the detector over others? Mention its limitations.	[6+2+2]
7.	a)	Explain strangeness and iso spin quantum numbers giving examples.	[4]
	b)	Explain from the conservation principles which of the following reactions occur. (i) $\pi^- + p \rightarrow n + \pi^\circ$	[6]
		(ii) $\pi^{+} + p \rightarrow \pi^{+} + p + \pi^{-} + \pi^{0}$	
		(iii) $\gamma + \pi \rightarrow \pi^- + p$	
		(iv) $p+p \rightarrow n+p+\pi^+$	